The rumen is the engine room of pastoral agriculture

M J Ulyatt

Effect of pasture type on liveweight (kg) (Johns *et al* 1963)

	1958	1960
	trial	trial
Perennial ryegrass	47	44
Short-rotation ryegrass	58	55
Per. rye. + white clover	54	57
S-R rye. + white clover	63	62
Sig.	**	**

Feeding value

f (Feed intake x Nutritive value)

Drivers of f include: physiological state (lactating, growing, etc), activity, environment, behaviour, genotype, pasture management

The comparative feeding value of pasture plants for liveweight gain (relative to perennial ryegrass = 100)

	n	CFV
Perennial ryegrass	16	100
Short-rotation ryegrass	11	148
Italian ryegrass	1	160
Browntop	1	100
White clover	14	192
Red clover	11	131
Lucerne	10	157
Lotus pedunculatus	6	162

Chemical composition of perennial ryegrass, short-rotation ryegrass and white clover (%DM)

Р	S	С
14.3	16.9	10.2
9.0	9.2	7.8
1.6	1.3	8.8
32.0	27.2	19.4
23.8	25.6	27.5
6.6	6.1	3.6
9.7	10.3	9.6
76.7	77.2	78.9
	14.3 9.0 1.6 32.0 23.8 6.6 9.7	14.316.99.09.21.61.332.027.223.825.66.66.19.710.3

Performance and digestion parameters from sheep grazed on P, S or C

(Ulyatt 1971)

	Р	S	С	Sig
Liveweight gain g/d)	227	270	331	***
OM intake (g/d)	1086	1123	1242	ns
Rumen DM pool (g)	448	413	336	**
Rumen OM retention (h)	10.4	8.7	6.3	**

N digestion in wethers fed 800g OM/d of P, S or C (MacRae & Ulyatt 1974)

	Р	S	С
N intake	38	35	35
N digestibility (%)	85	82	82
% N digestion in:			
Stomachs	43	24	32
Small intestine	46	67	59
% N intake in urine	72	59	70

Indoor digestion measurements extrapolated to field feed intakes

(MacRae & Ulyatt 1974)

	Р	S	С
Liveweight gain (g/d)	227	270	331
VFA absorbed (MJ/d)	10.2	8.6	9.9
Protein absorbed from small intestine (g/d)	119	175	188

Nitrogen digestion in sheep fed fresh herbage

(Ulyatt and Egan, 1979)

Simulation of dairy cow protein supply

How could we improve the efficiency of dietary N utilization in fresh pasture?

- Pasture N is very high, is soluble and is rapidly degraded
- Insufficient energy supply (soluble sugars)
- Also a timing problem between N availability and energy supply at both the rumen and tissue level
- Could we add soluble sugars or starch?
- Could we reduce protein degradability?

N digestion in sheep fed perennial ryegrass, white clover or sainfoin (Ulyatt et al 1977)

	Perennial ryegrass	White clover	Sainfoin
N intake (g/d)	38	35	34
% N intake digested in:			
Stomachs	27	18	-1
Intestines	58	64	75

Effects of CT on amino acid transactions in the small intestine of sheep fed *Lotus corniculatus* (ex Waghorn)

	СТ	CT+ PEG	
N intake (g/d)	38	38	
CT content (% DM)	2.2	2.2	
Rumen NH ₃ -N (µg/ml)	302	415	***
EAA entering SI (g/d)	96	64	**
App. EAA absorption (g/d)	59	36	**
EAA digestibility in SI (%)	69	65	NS

Effects of CT on amino acid transactions in the small intestine of sheep fed Lotus pedunculatus (ex Waghorn)

	СТ	CT + PEG	
N intake (g/d)	42	48	
CT content (% DM)	5.5	5.5	
Rumen NH ₃ -N (µg/ml)	175	458	***
EAA entering SI (g/d)	121	106	**
App. EAA absorption (g/d)	81	84	ns
EAA digestibility in SI (%)	66	79	*

The physical properties of feeds

Size of feed particles escaping the rumen of sheep fed lucerne hay (% particulate DM retained on sieve) (Ulyatt 1983)

Seive (mm)	Rumen	Abomasum
4.0	16	0
2.0	10	0
1.0	16	11
0.5	19	30
0.25	15	27
<0.25	27	33

Particle size distribution in the abomasa of sheep (% particulate DM retained on sieve) (Ulyatt et al 1984)

	Digestibility	Sieve size (mm)			-		
	of DM (%)	4	2	1	<1		
Perennial rye.	78	1	1	1	97		
White clover	79	0	1	5	93		
Red clover	78	0	1	4	95		
Lucerne	72	1	2	7	90		
Lucerne hay	65	0	1	3	96		
Meadow hay	60	1	1	5	93		

Effect of diet on the reduction of particle size during eating (Ulyatt et al 1984)

	Perennial ryegrass	Red clover	Lucerne	Meadow hay	Lucerne hay
DM intake (g/d)	861	918	952	943	946
DM digestibility (%)	78	78	72	60	54
Soluble DM released by eating (% intake)	37	38	32	20	23
Chews/g DMI during eating	37	13	11	12	19
% LP reduced to <1 mm by eating	49	52	45	35	37

Effect of diet on the reduction of particle size during rumination (Ulyatt et al 1984)

	Perennial ryegrass	Red clover	Lucerne	Lucerne hay	Meadow hay
DM digestibility (%)	78	78	72	60	54
Rumination time (min/d)	540	436	317	570	547
Chews/g DM during rumination	31	23	21	20	19
% LP reduced to <1 mm by rumination	42	39	63	60	65

The movement of DM through the rumen in sheep fed various diets (Ulyatt et al 1984)

	Perennial ryegrass	Red clover	Lucerne	Meadow hay	Lucerne hay
Rumen DM pool (g)	387	341	264	530	554
Fractional flows (d ⁻¹):					
Digestion	1.5	1.7	2.0	0.9	0.6
Rumination	4.9	5.9	6.2	4.8	4.4
Passage	1.0	1.1	1.6	0.9	1.1

Clearance of the reticulo-rumen

- Particle size reduction dominated by chewing
- C.EAT: prepares for swallowing, releases solubles, exposes tissues to microbes
- C.RUM: reduces PS of refractory material for clearance
- Particles must be <1-2 mm to pass from the rumen; but, only increases probability
- Reticular contractions drive passage; amplitude rather than frequency

Protein degradability of diets (ex McNabb)

CROSS SECTIONS OF GRASS LEAF VEINS

(Wilson, 1993)

Comparison of grass tissues (%DM) (Wilson 1993)

		Mesophyll	PBS
C 3	Blade	66	5
	Stem	2	0
C4	Blade	31	24
	Stem	2	0

Distribution of Rubisco in grass tissues (Ulyatt & McNabb 1999)

Grass type	C 3	C4	
Soluble N (% DM)	52	35	
% soluble protein as Rubisco	25 - 60	8 - 23	
% Rubisco in mesophyll	100	0	
% Rubisco in parenchyma bundle sheath	0	100	

Understand the rumen because it is the engine room of pastoral agriculture

Some physical factors that can affect feeding value

- Plant tissue structure
- Resistance to chewing
 Strength/elasticity of sclerenchyma fibre
- Bulk density
- Heat denaturation
- Degradability