Analysis of genetic markers and ergovaline production in Neotyphodium endophyte-infected Festuca species collected from Italy, Spain and Denmark

ANNE METTE DAHL JENSEN¹, LISBETH MIKKELSEN², PRATHAP KUMAR HALADY SHETTY³ and NIELS ROULUND⁴

¹Center for Forest, Landscape and Planning, The Royal Veterinary and Agricultural University, Rolighedsvej 23 DK 1958, Frederiksberg C, Denmark
²Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK 1871, Frederiksberg C, Denmark
³Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, Research Center Flakkebjerg Forsøgsvej 1, DK 4200 Slagelse
⁴DLF-Trifolium A/S, Post-box 19, Højerupvej 31, DK 4660, Store Heddinge, Denmark

Festuca grasses from various natural habitats are often infected with Neotyphodium endophytes. Genetic variation among the endophytes and variation in their ability to produce ergovaline toxin is also reported. The objective was to determine the endophyte infection frequency, ergovaline production and genetic diversity of Neotyphodium and Epichloë endophytes in Festuca species sampled from locations in Italy, Spain and Denmark. Endophytes were detected in 57, 54 and 100% of locations in Italy, Spain and Denmark respectively. Endophyte positive F. arundinacea samples from Italian and Danish origin were able to produce a relatively high quantity of ergovaline after 1 month incubation in the climate chamber. However, the isolates from Spain generally produced lower levels of the toxin. None of the F. rubra and F. pratensis produced ergovaline. A dendrogram based on microsatellite length polymorphism separated endophytes of each Festuca species. Further there was a pronounced genetic variation of the F. arundinacea endophytes between the countries and within the Italian and Spanish locations. Presently we are investigating the effect of plant genotype on the toxin production.