Validation of perennial ryegrass cultivar Forage Value Index rankings using independent trial data

C.I. LUDEMANN1, C.M. WIMS2 and D.F. CHAPMAN2,
1DairyNZ, Private Bag 3221, Hamilton 3240, New Zealand
2DairyNZ, PO Box 160, Lincoln University, Lincoln 7647, New Zealand

Abstract
The current DairyNZ Forage Value Index (FVI) categorises ryegrass cultivar-endophyte combinations into five, ‘star rating’ groups for dry matter (DM) yield using data from the National Forage Variety Trial (NFVT) system. However, variability in performance of cultivars between trials raises the question of how cultivars with different star ratings perform against each other under different conditions. The validity of the FVI star rating categories for perennial ryegrass was assessed using cultivar DM yield data from two independent trials outside the NFVT system and under dairy cow grazing with white clover. Results from the trials were used in Monte Carlo simulations to provide a probabilistic determination of the likelihood of high FVI rated cultivars outperforming the low FVI rated cultivars. Results indicate selecting high FVI (5 star) perennial ryegrass cultivars over lower FVI (3 star) cultivars deliver greater contributions to dairy operating profit in over 94% of the simulated iterations for the Waikato and Canterbury.

Keywords: Forage Value Index, *Lolium perenne*, plant breeding, selection, cultivars

Introduction
Since 2012, DairyNZ has published an independent economic index, the DairyNZ Forage Value Index (FVI; www.dairynz.co.nz/fvi), that ranks perennial ryegrass (*Lolium perenne*) cultivar-endophyte combinations based on their expected economic value to New Zealand dairy farmers. Seasonal dry matter (DM) yield data collected from National Forage Variety Trials (NFVT) operated by the New Zealand Plant Breeding and Research Association (NZPBRRA), are used to calculate the economic value of the perennial ryegrass cultivars for four regions in New Zealand: Upper North Island, Lower North Island, Upper South Island, and Lower South Island. Based on their expected economic value to dairy farmers, the FVI categorises cultivars by endophyte combinations into five ‘star rating’ groups in each dairy region. Cultivar-endophyte combinations with a higher star rating are expected to deliver greater economic value to dairy farmers (Chapman et al. 2017).

Data from NFVT test differences between perennial ryegrass cultivars grown in monoculture under high nitrogen (N) supply (Lee et al. 2012). However, this raises the possibility that cultivar rankings obtained in NFVT could change if trialled under differing management or in the presence of other species such as white clover (Camlin 1981) that may affect whole pasture performance. Furthermore, variability in performance of cultivars between NFVT sites raises the question of how cultivars in different FVI star rating categories perform against each other. Analysis of independent trial data in mixed swards and under grazing can, therefore, be used to test the validity of the FVI star rating categories.

The objective of this research was to assess the validity of the FVI star rating categories, when perennial ryegrass cultivars are grown with white clover and managed under rotational dairy cow grazing in independent trials, using cultivar variability in performance and a probabilistic (Monte Carlo) method of analysis.

Methods
This study utilised field experiments in Waikato (Upper North Island) and Canterbury (Upper South Island), described by Wims et al. (2014), in which 24 perennial ryegrass cultivar-endophyte combinations were grown with white clover from May 2013 until May 2016. Based on the 2017 FVI Lists (Ludemann & Peel 2017), the cultivar-endophyte combinations were categorised according to their FVI star rating. A minimum of two cultivars with 3 years of dry matter (DM) yield data were required for a FVI star grouping to be included in this study. Based on these criteria the DM yield data of eleven perennial ryegrass cultivars in Waikato (Upper North Island) and twelve in Canterbury (Upper South Island) were used in this study, and were categorised as being either 5-, 4- or 3-star cultivars for the respective FVI regions (Table 1), according to the published FVI Lists (Ludemann & Peel 2017).

The Waikato field experiment was located at DairyNZ Scott Farm, Hamilton (37°47’S, 175°19’E; altitude: 40 m a.s.l.; soil type: Bruntwood silt loam) and the Canterbury field experiment was located at the Lincoln University Research Dairy Farm, Lincoln, (43°38’S, 172°27’E; altitude: 12 m a.s.l.; soil type: Wakanui silt loam over...
a mottled sandy loam phase). The Waikato site was not irrigated, while at the Canterbury site 194 mm, 400 mm and 430 mm of irrigation water was applied in years 1, 2, and 3, respectively, with a centre pivot irrigator. The experiment was sown in a row-column design with four replicates on 26 April 2013 in the Waikato and on 4 April 2013 in Canterbury. Both sites were rotationally grazed by dairy cows when average herbage mass across the experimental area reached 2500-3200 kg DM/ha, to a post-grazing residual of 1500-1750 kg DM/ha. This resulted in 27 grazings during the experiment for the Waikato trial and 28 grazings for the Canterbury trial. Average annual nitrogen fertiliser application rates were 155 kg N/ha and 254 kg N/ha at the Waikato and Canterbury sites, respectively.

Herbage DM yield/ha was estimated for each cultivar directly before each grazing (except for the first grazing at the Waikato site and the first, second and last grazing at the Canterbury site) by cutting one strip (1.5 m wide by 5 m long) from each plot (where each plot had an area of 3 m wide by 11 m long in Waikato, and an area of 4 m wide by 12 m long in Canterbury) using a forage harvester (Haldrup GmbH, Ihlsheim, Germany) set to a cutting height of 55 mm above the ground. The fresh weight of the herbage was recorded in the field and a representative subsample of herbage was collected to 2000 g in the laboratory. The herbage yield was then laboratory dried at 95°C (Waikato) or single subsamples of approximately 100 g were oven-dried at 60°C (Canterbury) to constant weight (~ 48 hours). Annual and seasonal herbage DM yield/ha for each cultivar-endophyte combination was calculated for each site and replicate, each year. Five seasons, winter, early-spring, late-spring, summer and autumn, were defined for each location as described by Chapman et al. (2017). Yields were then averaged across replicates and years to obtain representative values for each cultivar at each site. Herbage DM yields for each of the FVI star groups represented were calculated as the mean and standard deviation of the cultivars within that group.

The economic value of the cultivar-endophyte combinations were calculated from the seasonal herbage DM yield data collected from the Waikato and Canterbury field experiments using the 2016/2017 FVI economic values (Table 2) and the calculations described by Chapman et al. (2017). The difference in economic value for the 3- and 4-star cultivars, compared with the 5-star cultivars, was determined using the means and standard deviations of the seasonal DM yield data from the field experiments. These were calculated probabilistically using @RISK software version 7.5 (Palisade Corporation, Ithaca, NY, USA) over 10 000 iterations of a Monte Carlo simulation. The Monte Carlo simulation method was used because it explicitly highlights the uncertainty in the results as they are calculated with levels of variation included in the outcomes. The method has also been applied to similar agricultural applications where a probabilistic approach to estimate future scenarios is applicable (Metropolis 1987).

Results and Discussion
There were insufficient data available from the field experiments to compare the performance of 1- and 2-star FVI rated cultivars. Nonetheless, the analysis presented here provides information on the performance of 3-, 4- and 5-star FVI rated cultivars under simulated dairy farm management in Waikato and Canterbury. The mean and annual DM yields for the cultivars evaluated are presented in Tables 3 and 4. Average annual DM yield was 8452 kg DM/ha and 14 774 kg DM/ha at the Waikato and Canterbury sites, respectively. The greater annual DM yield at the Canterbury site was mainly due to greater late spring (4241 kg DM/ha versus 2176 kg DM/ha) and summer (6100 kg DM/ha versus 3061 kg DM/ha) DM yields. The annual DM yields are comparable with those reported by Chapman et al. (2016) for perennial ryegrass-white clover pasture measured using the same technique and managed under dairy cow grazing at the same sites.

For the cultivars rated as 3, 4 and 5-star in the 2017 FVI lists, average annual DM yields at the Waikato site were 7809 kg DM/ha, 8515 kg DM/ha and 9033 kg DM/ha, respectively. At the Canterbury site, annual DM yields averaged 14 093 kg DM/ha, 14 708 kg DM/ha and 15 521 kg DM/ha for the 3, 4 and 5-star cultivars. The trend of increasing DM yield with star rating was reflected in all seasons at the Canterbury site and in winter, late-spring, and autumn in the Waikato site. The DM yield data of the perennial ryegrass cultivars evaluated in this study were collected from pastures where perennial ryegrass was grown with white clover and managed under rotational dairy cow grazing. Therefore, genotype × environment interactions related to management (Lee et al. 2012) and potential species interactions with white clover (Camlin 1981) may affect herbage dry matter yields have been accounted for in this study.

Results of the Monte Carlo simulations are presented in Figures 1 and 2. Of the 10 000 iterations >94.9% indicated that the group of 5-star cultivars had a greater economic value than a group of 3-star cultivars based on DM yield data collected from the Waikato site. Using DM yield data from the Canterbury site, >97.1% of the iterations indicated that the group of 5-star cultivars had a greater economic value than a group of 3-star cultivars. The 5-star cultivars using the Waikato data by Chapman et al. (2016) for perennial ryegrass-white clover pasture measured in the Canterbury data (Figure 2). This analysis indicates that there is a high probability that the relative economic value of perennial cultivars based on performance data collected from NFTV, and their associated FVI rankings, is consistent when cultivars are managed under typical dairy farm conditions i.e. grown in a mixed pasture with white clover and managed under well managed dairy cow grazing.

Farmers, therefore, can be confident that selecting perennial ryegrass cultivars with a high FVI rating (5-star) will deliver greater economic value to their dairy farming business than cultivars with a lower FVI.

Conclusions
This statistical analysis and probability simulations run on two independently grazed, mixed sward yield trials, align strongly with the FVI star rating information. This gives farmers further confidence that selecting high (5-star) FVI perennial ryegrass cultivars over lower FVI cultivars (when accounting for variability in seasonal DM production) will deliver a greater economic benefit to dairy farmers. While 5-star cultivars may not always perform better than 3- or 4-star rated cultivars, the probability of this occurring is low based on this study.
ACKNOWLEDGEMENTS

The authors wish to thank the New Zealand Plant Breeders Association for access to the data analysed in this paper and support for the Forage Value initiative. Funding for this work was provided by New Zealand dairy farmers through DairyNZ Inc (Projects RD1414 and IS1403). The authors would like to acknowledge the technical assistance of the DairyNZ Technical Team with the experimental field work and the statistical expertise of Barbara Kuhn-Sherlock.

REFERENCES


